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MODIS sensing of aerosol radiative forcing of climate

Example of Data Structure And Collaboration With Modelers

and what is waiting for us behind the algorithm horizon

Yoram Kaufman

NASA/GSFC Atmospheric Scientist and EOS-AM Project Scientist
{Kaufman @climate.gsfc.nasa.gov}

Why  do we care ? Biggest uncertainty in radiative forcing of climate in the 
160 years of climate change research

How MODIS can address the indirect forcing ?

How MODIS can address the direct forcing ?

Lessons learned: Science done on the daily level 3 data set
Forming an alliance:  satellites - ground network - models
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How MODIS can address the indirect forcing ?

• MODIS: from single photons to 0.25-1 km analysis:
smoke, clouds (T, Rc, ρc) and water vapor

• Summary (through level 2) to daily level 3 data

• Statistical display of the interactions between the parameters in a 
daily 1°x1° grid scale

• The role of models -
ingest MODIS information and generate the anticipated answer
serve as a crude method to extrapolate MODIS accurate measurements
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How MODIS can address the direct forcing ?

• The unprecedented power behind the spectral information:
Resolve spectrally the surface and aerosol radiative forcing
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Scatter plot between the radiative flux at 0.4-0.7 µm reflected from the surface, and estimated at nadir
from the 1.65 and 2.1 µm channels, vs. the actual flux at nadir.   The std in the error in F(0.4-0.7 µm)  is

4.3 w/m2. The optical thickness was derived from the AVIRIS data as 0.09±0.07 .
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Scatter plot of the smoke aerosol contribution to the flux at 0.4-0.7 µm escaping to space, measured in
several locations in Brazil and the smoke optical thickness.
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Lessons learned:
Science done on the daily level 3 data set - summary of parameters and 
the processes that govern the interaction between them:

The ability of water vapor to control the influence of smoke on 
clouds.

The direct effect, the indirect effect and the mixed effect - the 
subpixel clouds and inter-cloud, cloud edge aerosol - models and 

field experiments have a big problem with that

The effect of this "soup" on radiation

Forming an alliance:  satellites - ground network - models

MODIS monitors daily the aerosol main parameters
Ground based observations supplement missing information
Trajectory mass balance models inter/extrapolate the results.


